登录注册   忘记密码
查看: 49|回复: 3
上一主题 下一主题

[发布] 蓝色发光二极管 (blue LED) 与其他 LED 相比有何特别?

楼主
发表于 2017/8/16 16:38:10 | 只看该作者

蓝色发光二极管 (blue LED) 与其他 LED 相比有何特别?为什么凭此发明能够获得 2014 年诺贝尔物理学奖?

那么问题来了= =,为什么是蓝色发光二极管的发明者而不是其他LED的发明者获得了诺贝尔奖,而且蓝色LED相较于其他晚了几十年才被发明,其中的缘故又是什么?赤崎勇、天野浩、中村修二的发明革新之处在哪里?
1 楼
发表于 2017/8/18 | 只看该作者

1.特别之处

正如其他答案所说,红光和绿光LED早已发明出来,并且很多材料都可以用来做红光和绿光LED,具体可参照LED的wikipedia. 而蓝光LED在中村之前有很多人做,而且1971年第一个蓝光LED就做出来了,用的就是GaN,只不过亮度效率太低,无法商用,所以大家都觉得GaN没前途,从而转向其他材料,像SiC等,不过后来研究者们发现这玩意做出来的LED效率也低而且制造起来非常贵,这个时候默默无闻的中村先生继续在搞被大家遗忘的GaN,最后成功长出来好的GaN晶体以及有效的p型doping的方法,使蓝光LED的亮度和效率大大提高。很快此技术就商业化了。这里面的物理机制没有什么,本科生都懂,其实中村解决的就是一个微电子器件的工程问题(外延生长和掺杂的问题)

2.这个成就配得上诺贝尔奖吗
Definitely!
绝对配得上。不管是基础物理研究还是应用物理研究,只要此项研究可能或者已经带来巨大的理论或是技术上的变革,都是有可能被授予诺贝尔物理奖的。而蓝光LED无疑是已经给社会带来巨大的影响。因为现在所有的LED照明以及LCD显示都会利用到蓝光LED。
首先说用于照明的白光的形成,
A. blue LED green LED red LED
B. blue LED yellow phosphor(磷光粉)
C. UV LED R, G, B 三种phosphor
其中UV LED基本上是基于blue LED发展而来的,在高效的GaN以及InGaN blue LED被发明出来后,研究者在GaN掺入Al也就是AlGaN可以产生更短波的UV光,当然其中的器件结构也会发生变化,不是简单的掺在一起。
所以说如果没有高效的blue LED现在的白光LED照明基本上不可能如此普及,因为成本会非常贵(事实上有了blue LED现在还是挺贵的),所以从这可以看到中村先生工作的意义。
另一个方面是LCD显示,以前的LCD显示背光光源是用冷阴极荧光灯,能耗高而且整个LCD显示器比较厚笨重,LED技术成熟之后,大多采用LED做背光,可以做的很薄而且能耗低,图像效果好。而LCD里用的是白光LED或者用分开的RGB 三种LED,所以说蓝光LED的发明在液晶显示方面也有着巨大的意义,没有这个的话,液晶电视的屏幕不会这么薄,手机平板可穿戴设备等也可能更笨重更耗电(ps.更高效电池的研发要加油了,因为电子产品中几乎所有其他零件的研发目标之一都要尽可能的降低能耗,都在受限于傲娇的电池君啊)
当然下一代显示技术OLED也在蓬勃发展中,这是另一个话题了。也许十年后OLED成为主流显示技术的时候,邓青云教授也是配得上诺奖的(希望邓老那时候安在哈。)

所以个人认为这个奖颁给blue LED的发明人是完全OK的。

ps. 中村先生是2000年左右跳槽到UCSB的,11年听过UCSB校长的talk, 说他认为未来几年blue LED的研究会得诺奖,说他2000年请中村过去的时候就很看好他的研究,所以才花大钱建实验室请中村过去。现在果然是了,这就是大学校长的眼光吧。


2 楼
发表于 2017/8/22 | 只看该作者

虽然这三个人的贡献很突出,氮化物领域出了诺贝尔奖多少有些意外。这里按照我的理解,简单介绍下氮化物这个研究领域和三个人的成就。

首先要说明为什么氮化物晶体材料,GaN,InN,AlN以及他们的混合晶体是很重要的发光材料。由下面的禁带发光光谱(wavelength)和晶格(lattice)的图表可以看出,氮化物所覆盖的发光光谱范围是很宽的,是宽禁带的半导体材料,尤其是其混合晶体InGaN可以覆盖整个可见光光谱而AlGaN可以覆盖到深紫外光谱区,这在半导体光电材料中是具有突出的优势。发展相对成熟的III-V族混合晶体例如GaAs,InP等其禁带带宽过小,远远达不到覆盖所有可见光的,尤其是达不到覆盖蓝光光谱的能力。虽然我们可以长出高质量的III-V晶体和器件,但是其永远不能覆盖短波长可见光谱,也就是永远不能用作白光LED的发光材料。一旦我们可以随意的制备氮化物晶体,那么覆盖整个可见光谱的半导体发光将会变的唾手可得。而半导体发光的节能效果甚为明显,LED真正发光层只有几纳米到十几纳米厚,这么薄的材料里,能量再损失能损失多少。

但是,虽然III-nitride氮化物有如此魅力。但是由于其生长制备极其困难,相当长一段时间都是被忽视的。首先制备GaN的基板就很困难。做半导体器件,一定要有生长的基板,也就是发光材料依附的材料。像Si,GaAs之类的因为熔点低,可以通过高温溶解再提取的方法制备,其成本也不算高。但是GaN是极其稳定的材料,其熔点高达 2791K,融解压 4.5GPa,如此的高温高压显然是极其困难。所以高质量的GaN晶体基板直到今天也是难题。高质量的氮化物基板现在无法量产,零星的产品也是死贵。

既然在同质基板上生长材料是不可能的,就要在非氮化物基板上生长氮化物材料。显然,由于晶格不匹配和温度形变不匹配等原因,在非氮化物基板,例如蓝宝石和硅晶体上,获得高质量可以实用的氮化物材料是很困难的。这也就是氮化物材料被忽视的重要原因。

这里就说为什么赤崎和天野先生的贡献能获得诺贝尔奖。当然现在氮化物领域是一个非常热门的研究领域,每次开国际学会都是乌央乌央的一坨一坨的人,而氮化物领域的照明,电子功率器件等都是相当大的产业,自然是搞氮化物的领域车水马龙,人丁兴旺。明年氮化物的国际学会在北京开,鉴于国内LED企业众多,估计参会人数会创历史新高吧。

虽然现在这个领域很红火,但是当年在赤崎先生坚持的时代,是一个彻头彻尾的冷门。当整个科学界都视这个研究方向为不可能课题的时候,仍然坚持的人是要有眼光和勇气的。

赤崎先生研究的就是在非氮化物基板,蓝宝石,晶体硅等材料上生长高质量的氮化镓外延层。其中一个非常重要的成果就是当时还是在读博士生的天野先生的研究成果。他们用一层100纳米厚度的低质量AlN覆盖在蓝宝石基板上,然后再在AlN上面生长GaN。由于AlN的缓冲作用,GaN外延和蓝宝石基板的晶格不匹配被部分抵消,最终的GaN外延层质量大幅提高,其GaN外延层质量用作生长蓝光LED的基础已经毫无问题。GaN基光电器件初见曙光

这个成果是在1986年发表的。而获得一个蓝光LED器件仅仅解决GaN层的问题是不够的。如下图所示,一个LED器件要有掺杂p-GaN和n-GaN以及混合晶体InGaN的生长,当时,因为研究氮化物并不是一个热点,这些问题都是空白的,有待继续研究。

此时,一个大侠横空出世,就是中村修二,如果说赤崎和天野让氮化物的研究有了希望。那么中村就是这个领域的独行侠和集大成者。中村很牛,并非名牌大学毕业,当时并没有博士学位,而只是一个技术员。他当时觉得氮化物领域有前途,其主张获得了日亚公司的全力支持。而此君就像天神附体一般,短短的时间内,不但沿着天野的思路,创造了新的获得高质量GaN的方法,还解决了蓝光LED的各项关键技术,甚是直接做出了蓝光激光。要知道在异质结基板上做激光器不是那么好做的,即使在同质结基板上的激光器(III-V族激光器)也不是那么好做。可见日本公司的研究环境和研究能力是很牛的。日亚据此在氮化物领域获得了大量的专利。当时由于这个研究领域刚起步,中村的速度又太快,所以氮化物器件研究的大师地位自然就是中村一人的。其实当时赤崎研究室和中村的研究是有竞争关系的,不过中村做的成绩更为耀眼一些。

其中,中村的制备高质量GaN外延薄膜技术如下图,用低温的GaN(LT GaN)做缓冲层而不是天野的AlN做缓冲层,因为GaN结晶比AlN更为方便容易,所以此项技术在工程量产上有重大的意义。这篇文章当年发表在JJAP上,而且作者只有他自己。这个技术是很重要的成果,现在全世界各个大学实验室和公司依然用这个技术获得高质量的GaN。这里不得不说说发表文章的事儿,实际上好像在氮化物领域此三位重要的开拓性的人物,在他们获得重要成果的时代都没有发表过极高影响因子的文章。我个人觉得这个领域,后面所有人的研究其重要性都不可以和这个三人比。而这个JJAP现在国内好一点的大学已经看不上眼了。而我个人感觉,中村这些突破之后,氮化物领域的真正大的突破几乎没有。但是高影响因子文章遍地都是。有些事情就是很奇怪。毫无任何实用价值的研究倒是乱发文章,当然这是我的个人偏见。

至于蓝光LED为什么重要,因为用蓝光可以激发荧光粉材料发出其他黄绿光谱的光,加上蓝光本身就成了现在商用的白光LED而这个是InGaP等红光LED做不到的,因为荧光粉的发光光谱只能由更短波长的光来激发,也就是只能是蓝光激发黄绿光,而不能由黄绿光激发蓝光。所以获得短波长的光是至关重要的。

所以这个诺贝尔奖颁给了蓝光LED的发明者而不是LED的发明者。因为对于应用意义上的白光LED,显然这个奖是发给为人类节能照明事业贡献巨大的研究,其中蓝光贡献更大,更直接。

为什么不直接生长蓝光,黄绿光谱的LED。理论上是可以不用荧光粉而只靠晶体本身发光而做到产生白光的。但是要制备发黄绿光的LED必须要高In组分的InGaN,这在目前还是个难题。实际上如果能轻易获得高In组分的InGaN。用氮化物做的太阳能其效率将会比现有技术大为提升。这里面受益的可能还有新发展的电解水的技术。

氮化物领域还有很多不完善的亟待解决的问题,例如非极性面生长,高In组分的InGaN,GaN基板这样制约着器件本身的成本和效率等问题。成本居高不下和效率和寿命提升的瓶颈正是阻碍其大规模商用化的关键。在今年八月份的国际学会上,中村做的基调演讲,按照他的预测,非极性面的GaN基板将来会成为主流,若真是如此,氮化物领域还是有前途的,否则,各种新材料层出不穷,而氮化物器件的成本不能大幅降低而效率和寿命不能大幅提高的话,被新材料淘汰也是有可能的。

在电子功率器件等领域,氮化物还是有着很大的发展前景,其未来不只是局限于LED行业,我们生活中的很多方面都可能因为氮化物的应用而改观。其节能的特点,让其在人口暴增,能源需求暴增的时代,显得有格外重要的现实意义。

这个角度讲,三个氮化物领域的开拓性人物是值得获得诺贝尔奖的。可以想象,如果未来LED是人类照明事业的根本,那么这个技术少发明一天,人类要损失多少能源消耗。


现在很多人看来日本的这次诺贝尔奖来说日本科技如何强大,我倒不这么觉得,我反倒看到日本的科技是如何衰落的。中村这个毫无靓丽背景的技术员,创造了一个又一个奇迹,自己获得了蓝光之父的大师地位,除了靠着公司的支持,更多的是个人的创造力和能力问题。但是,这个个人英雄却没有很好的融入日本社会,中村和日亚,甚至中村去加州大学当教授,而没有留在日本的大学,显然其中故事是耐人寻味的。如果中国有这样的技术大师,而大师成名之后,又远走美国,我只能说中国的科学技术界是有严重问题的。我倒是觉得,中国现在又这样的大师,各个大学会抢着要,这点比日本大学要好一些。而中村和Cree的关系来看,中村出走,对日亚到底有多大的损失也不好说。

另外,现在保守的日本企业还有多少空间能允许中村这样的人来发挥也不好说。而且这些研究成果都是在八九十年代,正是全球化还没有兴起,日本经济依然风头正劲的年代。而三人,尤其是中村身上的那种能闯能拼的大侠精神,现在在日本九零后身上还有多少也未可知。

中村这样的大师出走的故事,如果不是氮化物相关的人是不知道的,我也一直很想吐槽这件事。现在随着诺贝尔奖的效应,这个应该广为人知了,整个日本社会应该反思中村为什么出走,中村在出成果的时代显然还是日本人。本来应该是三个日本人获奖,这是日本科研界的荣耀。但是最终变为两个日本人和一个日本裔获奖,多少有点尴尬,背后原因值得日本社会好好玩味。


3 楼
发表于 2017/8/29 | 只看该作者

他们三个发明了基于InGaN的蓝光发光二极管。InGaN的禁带宽度大,所以电子从导带向价带坠落时发出高能量(短波长)的光。比如用GaAs作为二极管,由于禁带宽度小,只能发出红外光。宽禁带的晶体长晶不容易,GaN不能像GaAs或Si一样长成大片,柱形的单晶体。考虑到晶格的匹配,一般只能在蓝宝石上生长(现在也能在其他基地上生长,SiC,Si,甚至金属)。

个人觉得这几年的诺贝尔物理奖更倾向于给应用物理方面的,能够在世界产生巨大应用前景或已经产生极大影响的研究成果。比如光纤,石墨烯,加这次的蓝光发光二极管。蓝光二极管的产生,三元发光色才完备,才能使白光显像成为可能。现在的广场大屏幕LED,手机,电视都在用,已经融进了每家每户。市场上已经大量出现LED的灯泡,他们是通过改变蓝光和黄光的比例产生出白光或类似太阳色的自然光,其中黄光是通过蓝光照射荧光粉产生的。所以有了蓝光LED 就有了白光,使节能的白光LED照明成为可能。之后的紫外光二极管加荧光粉产生的白光二极管(日光灯原理: 汞蒸气产生紫外光,紫外光轰击荧光粉后产生二级光子为白光),使白光具有了全光谱。未来的家庭,市政的光源必定是LED的天下。从影响力上看,这几十年的物理研究,影响力无出其右。
======================================================================
评论里很多人说第一段太专业,看不懂。有大学物理系本科的固体物理知识,应该都能看懂。这里稍微解释一下。

多数解释性内容copy自wiki,因为wiki上的解释已经非常好了,至少比我临时写得要好。
首先解释下能带(引号斜体from wiki):

“固体材料的能带结构由多条能带组成,能带分为传导带(简称导带)、价电带(简称价带)和禁带等,导带和价带间的空隙称为能隙。

能带结构可以解释固体中导体、半导体、绝缘体三大类区别的由来。材料的导电性是由“传导带”中含有的电子数量决定。当电子从“价带”获得能量而跳跃至“传导带”时,电子就可以在带间任意移动而导电。


一般常见的金属材料,因为其传导带与价带之间的“能隙”非常小,在室温下电子很容易获得能量而跳跃至传导带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。”

我真的不太会科普,wiki的这段表述也不太容易理解,所以尽力解释下:通俗点说(但不严谨): 电子在晶体中有两种状态,一种是束缚态,绕着原子核转的。另一种是自由状态,可以在不同的原子核或是晶格中来回跑的。自由状态的能量一般比束缚状态的能量要高一点。比如说金属,有很大一部分电子是自由的,可以在不同晶格中穿梭,所以金属能导电。但是本征半导体(没有掺杂的半导体)或绝缘体,电子都束缚在原子核周围。靠热激发,电子还不能变成自由态,所以一般情况下不导电。

对于本征半导体或绝缘体,从束缚状态到自由状态,电子需要一定的能量去激发,可以通过热,震动,光子,其他粒子等等。束缚态中,存在着各种能带,电子可以存在于这些能带中,每个能带存在着两个自旋相反的电子。电子的能量从低到高填满了这些束缚态的能带,我们称之为价带。价带填满的时候,价带是满带,满带不导电。其中价带的能量最高的那一条带的能量最高点,称之为价带顶。一会会用到这个概念。同样,自由态现在是空带,没有电子,也不会导电。但是一旦有了电子,这些电子就能自由穿梭,开始导电,自由态对应的能带,我们成为导带。其中导带的能量最低的那一条带的能量最低点,称之为导带底。价带顶和导带底之间的能量差称之为禁带。电子不能在禁带中存在,因为没有可以存在的态。

那么怎么让半导体导电呢,就是掺杂。”掺杂是半导体制造工艺中,为纯的本征半导体引入杂质,使之电气属性被改变的过程。“掺杂就是在禁带中增加一条掺杂能级, 本来不能有电子存在的地方,由于引入了一条掺杂能级了,所以可以有电子存在。有的掺杂能级靠近价带,称为P掺杂,价带中的电子通过热激发到了掺杂能级,就能导电,因为这时价带不再是满带,空穴能自由走。想象一下,一个原子缺了一个束缚的电子后,边上的原子有时会贡献一个电子给他,边上的原子就缺了一个电子。缺了电子的位置成为空穴。同时,有的掺杂能级靠近导带就是N掺杂。掺杂能级中的电子可以激发到导带,参与传导。 这些参与导电的电子或空穴成为载流子。载流子浓度越高,导电性能越好。

把P型半导体和N型半导体贴在一起就是个PN结,Diode(二极管)。 LED就是PN结的一个应用,其中D 就是Diode。

刚才说到,P型掺杂后,价带上有空穴;N型掺杂后,导带上有电子。那么将P和N贴在一起会发生什么呢?导带上的电子会落到价带上的空穴,这是个电子空穴的复合过程,复合的过程也是一个发光的过程。因为导带上的电子能量高 ,价带上的空穴能量低。在下落过程中,发出一个光子。这个光子的能量正好是导带底的能量减去价带顶的能量,也就是之前说的禁带宽度。光子的能量和光子的波长有关,E=hv。波长越短,颜色偏紫,能量越高;波长越长,颜色偏红,能量越低。也就是说:禁带宽度越大,产生偏蓝光,禁带宽度越小,产生偏红光。

这些就是LED的基本原理了。
好像涵盖了第一段所有的术语了,有哪儿没有科普清楚的,请在评论里写出,择日回答。


验证码
看不清换一张